Skip to main content
Log in

Preparation of pure gum raw materials-low brown algae application

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Octenylsuccinate starch ester, also called pure gum, is non-toxic and odourless modified starch which is widely used in many food fields. This study synthesized pure gum in a reaction kettle using the low molecular weight trehalose and octenyl succinic acid. An orthogonal test was carried out to find how the reaction factors affect the synthetization of octenylsuccinic acid polysaccharide ester and to optimize the reaction at single factor level. The optimal products were obtained using 1:2 of octenylsuccinic acid: alginic acid, catalysed by 0.1% p-toluenesulfonic acid catalyst for 1.5 h at 200°C under vacuum conditions. The gained product contains up to 46% of seaweed gel monoesters. The degree of esterification of the polysaccharide is controlled by the use of the small-molecule trehalose. Compared with the traditional methods, our process can reduce raw material cost and improve emulsification stability of pure gum. These all can significantly improve the market competitiveness of pure gum products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apaliya M T, Zhang H Y, Yang Q Y, et al. 2017. Hanseniaspora uvarum enhanced with trehalose induced defense-related enzyme activities and relative genes expression levels against Aspergillus tubingensis in table grapes. Postharvest Biology and Technology, 132: 162–170.

    Article  Google Scholar 

  • Apaliya M T, Zhang H, Zheng X, Yang Q, Mahunu G K, Kwaw E. 2018. Exogenous trehalose enhanced the biocontrol efficacy of Hanseniaspora uvarum against grape berry rots caused by Aspergillus tubingensis and Penicillium commune. Journal of the Science of Food & Agriculture, https://doi.org/10.1002/jsfa.8998.

  • Baker J L, Lindsay E L, Faustoferri R C, To T T, Hendrickson E L, He X, Shi W, Mclean J S, Quivey R G Jr. 2018. Characterization of the trehalose utilization operon in Streptococcus mutans reveals that the TreR transcriptional regulator is involved in stress response Pathways and toxin production. Journal of Bacteriology, 200(12), https://doi.org/10.1128/JB.00057-18.

  • Beattie G M, Crowe J H, Lopez A D, Cirulli V, Ricordi C, Hayek A. 1997. Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes, 46(3): 519–523.

    Article  Google Scholar 

  • Brockbank K G M, Campbell L H, Greene E D, et al. 2011. Lessons from nature for preservation of mammalian cells, tissues, and organs. In Vitro Cellular and Developmental Biology-Animal, 47(3): 210–217.

    Article  Google Scholar 

  • Cai X, Seitl I, Mu W M, et al. 2018. Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Applied Microbiology and Biotechnology, 102(7): 2 965–2 976.

    Article  Google Scholar 

  • Caldwell C G, Wurzburg O B. 1953. Polysaccharide derivatives of substituted dicarboxylic acids. US, US2661349A.

    Google Scholar 

  • Charoen R, Jangchud A, Jangchud K, Harnsilawat T, Naivikul O, McClements D J. 2011. Influence of biopolymer emulsifier type on formation and stability of rice bran oil-in-water emulsions: whey protein, gum arabic, and modified starch. Journal of Food Science, 76(1): E165–E172.

    Article  Google Scholar 

  • De Virgilio C, Hottiger T, Dominguez J et al. 2010. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. European Journal of Biochemistry, 219(1–2): 179–186.

    Google Scholar 

  • Domian E, Brynda-Kopytowska A, Cenkier J et al. 2015. Selected properties of microencapsulated oil powders with commercial preparations of maize OSA starch and trehalose. Journal of Food Engineering, 152: 72–84.

    Article  Google Scholar 

  • Drikic M, De Buck J. 2018. Split trehalase as a versatile reporter for a wide range of biological analytes. Biotechnology & Bioengineering, 115(5): 1 128–1 136.

    Article  Google Scholar 

  • Fortuna T, Królikowska K, Pietrzyk S et al. 2017. Effect of metal ions on physicochemical and rheological properties of octenyl succinate starches. LWT, 86: 447–455.

    Article  Google Scholar 

  • Hernández-Meza J M, Sampedro J G. 2018. Trehalose mediated inhibition of lactate dehydrogenase from rabbit muscle. The application of kramers’ theory in enzyme catalysis. The Journal of Physical Chemistry B, 122(15): 4 309–4 317.

    Article  Google Scholar 

  • Higashiyama T. 2002. Novel functions and applications of trehalose. Pure and Applied Chemistry, 74(7): 1 263–1 269.

    Article  Google Scholar 

  • Iturriaga G, Suárez R, Nova-Franco B. 2009. Trehalose metabolism: from osmoprotection to signaling. International Journal of Molecular Sciences, 10(9): 3 793–3 810.

    Article  Google Scholar 

  • Jansson A, Järnström L. 2005. Barrier and mechanical properties of modified starches. Cellulose, 12(4): 423–433.

    Article  Google Scholar 

  • Jeon Y S, Lowell V A, Gross R A. 1999. Studies of starch esterification: reactions with alkenyl-succinates in aqueous slurry systems. Starch-Stärke, 51(2–3): 90–93.

    Article  Google Scholar 

  • Juansang J, Puttanlek C, Rungsardthong V, Puncha-Arnon S, Uttapap D. 2012. Effect of gelatinisation on slowly digestible starch and resistant starch of heat-moisture treated and chemically modified canna starches. Food Chemistry, 131(2): 500–507.

    Article  Google Scholar 

  • Królikowska K, Fortuna T, Pietrzyk S, Gryszkin A. 2017. Effect of modification of octenyl succinate starch with mineral elements on the stability and rheological properties of oil-in-water emulsions. Food Hydrocolloids, 66: 118–127.

    Article  Google Scholar 

  • Lau U Y, Pelegri-O’Day E M, Maynard H D. 2017. Synthesis and biological evaluation of a degradable trehalose glycopolymer prepared by RAFT polymerization. Macromolecular Rapid Communications, 39(5), https://doi.org/10.1002/marc.201700652.

  • Lee J Y, Ko J H, Mansfield K M, Nauka P C, Bat E, Maynard H D. 2018. Glucose-responsive trehalose hydrogel for insulin stabilization and delivery. Macromolecular Bioscience, 18(5): 1700372.

    Article  Google Scholar 

  • Li D H, Li L, Xiao N, Li M Y, Xie X A. 2018. Physical properties of oil-in-water Nanoemulsions stabilized by OSA-modified starch for the encapsulation of lycopene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 552: 59–66.

    Article  Google Scholar 

  • Li Y, Wang Z W, Feng Y, Yuan Q P. 2017. Improving trehalose synthase activity by adding the C-terminal domain of trehalose synthase from Thermus thermophilus. Bioresource Technology, 245: 1 749–1 756.

    Article  Google Scholar 

  • Liang R, Shoemaker C F, Yang X Q, Zhong F, Huang Q R. 2013. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry, 61(6): 1 249–1 257.

    Article  Google Scholar 

  • Lin Y C, Zhang J, Gao W C, Chen Y, Li H X, Lawlor D W, Paul M J, Pan W J. 2017. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism. BMC Plant Biology, 17(1): 247.

    Article  Google Scholar 

  • Liu T T, Zhu L Y, Zhang Z P, et al. 2017. Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134. Scientific Reports, 7: 17 586.

    Article  Google Scholar 

  • Liyaghatdar Z, Emamzadeh R, Rasa S M M, et al. 2017. Trehalose radial networks protect Renilla luciferase helical layers against thermal inactivation. International Journal of Biological Macromolecules, 105: 66–73.

    Article  Google Scholar 

  • Mandal S, Debnath K, Jana N R. 2017. Trehalose-functionalized gold nanoparticle for inhibiting intracellular protein aggregation. Langmuir, 33(49): 13 996–14 003.

    Article  Google Scholar 

  • O’Neill M K, Piligian B F, Olson C D, Woodruff P J, Swarts B M. 2017. Tailoring trehalose for biomedical and biotechnological applications. Pure & Applied Chemistry. Chimie Pure et Appliquee, 89(9): 1 223–1 249.

    Article  Google Scholar 

  • Ohtake S, Wang Y J. 2011. Trehalose: current use and future applications. Journal of Pharmaceutical Sciences, 100(6): 2 020–2 053.

    Article  Google Scholar 

  • Qiu D, Bai Y, Shi Y C. 2012. Identification of isomers and determination of octenylsuccinate in modified starch by HPLC and mass spectrometry. Food Chemistry, 135(2): 665–671.

    Article  Google Scholar 

  • Sarkar S, Gupta S, Variyar P S, Sharma A, Singhal R S. 2013. Hydrophobic derivatives of guar gum hydrolyzate and gum Arabic as matrices for microencapsulation of mint oil. Carbohydrate Polymers, 95(1): 177–182.

    Article  Google Scholar 

  • Sarkar S, Singhal R S. 2011. Esterification of guar gum hydrolysate and gum arabic with n-octenyl succinic anhydride and oleic acid and its evaluation as wall material in microencapsulation. Carbohydrate Polymers, 86(4): 1 723–1 731.

    Article  Google Scholar 

  • Shirakashi R, Takano K. 2018. Recrystallization and water absorption properties of vitrified trehalose near room temperature. Pharmaceutical Research, 35(7): 139.

    Article  Google Scholar 

  • Shogren R L, Viswanathan A, Felke F, Gross R A. 2000. Distribution of octenyl succinate groups in octenyl succinic anhydride modified waxy maize starch. Starch-Stärke, 52(6–7): 196–204.

    Article  Google Scholar 

  • Sizovs A, Xue L, Tolstyka Z P, Ingle N P, Wu Y Y, Cortez M, Reineke T M. 2013. Poly(trehalose): sugar-coated nanocomplexes promote stabilization and effective polyplex-mediated siRNA delivery. Journal of the American Chemical Society, 135(41): 15 417–15 424.

    Article  Google Scholar 

  • Sweedman M C, Tizzotti M J, Schäfer C, Gilbert R G. 2013. Structure and physicochemical properties of octenyl succinic anhydride modified starches: a review. Carbohydrate Polymers, 92(1): 905–920.

    Article  Google Scholar 

  • Tanaka M, Machida Y, Niu S Y, et al. 2004. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature Medicine, 10(2): 148–152.

    Article  Google Scholar 

  • Tang B, Wang S, Wang S G, Wang H J, Zhang J Y, Cui S Y. 2018. Invertebrate trehalose-6-phosphate synthase gene: genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology, 9: 30.

    Article  Google Scholar 

  • Tesch S, Gerhards C H, Schubert H. 2002. Stabilization of emulsions by OSA starches. Journal of Food Engineering, 54(2): 167–174.

    Article  Google Scholar 

  • Torres O, Murray B, Sarkar A. 2016. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology, 55: 98–108.

    Article  Google Scholar 

  • Wang C, He X, Fu X et al. 2015. High-speed shear effect on properties and octenylsuccinic anhydride modification of corn starch. Food Hydrocolloids, 44(4): 32–39.

    Article  Google Scholar 

  • Wang J Q, Ren X D, Wang R M, Su J, Wang F. 2017. Structural characteristics and function of a new kind of thermostable trehalose synthase from Thermobaculum terrenum. Journal of Agricultural & Food Chemistry, 65(35): 7 726–7 735.

    Article  Google Scholar 

  • Wen Z, Lin J, Su J, Zheng Z K, Chen Q, Chen L D. 2017. Influences of trehalose-modification of solid lipid nanoparticles on drug loading. European Journal of Lipid Science & Technology, 119(9).

  • Wu H Y, Chang Q. The PLOS ONE Editors. 2018. The cryoprotectant trehalose could inhibit ERS-induced apoptosis by activating autophagy in cryoprotected rat valves. PLoS One, 13(7): e0201082.

    Article  Google Scholar 

  • Wu Y, Wang J, Shen X, Wang J, Chen Z, Sun X, Yuan Q, Yan Y. 2017. Investigating the strategies for microbial production of trehalose from lignocellulosic sugars. Biotechnology & Bioengineering, 115(3): 785–790.

    Article  Google Scholar 

  • Yang S J, Lv X, Wang X H, Wang J Q, Wang R M, Wang T F. 2017. Cell-surface displayed expression of trehalose synthase from Pseudomonas putida ATCC 47054 in Pichia pastoris using Pir1p as an anchor protein. Frontiers in Microbiology, 8: 2 583.

    Article  Google Scholar 

  • Zheng Y, Hu L, Ding N, Liu P, Yao C, Zhang H. 2016. Physicochemical and structural characteristics of the octenyl succinic ester of ginkgo starch. International Journal of Biological Macromolecules, 94: 566–570.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongdong Liu.

Additional information

Supported by the National Key Scientific Research Project of China (No. 2016YFD0400800)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, M., Liu, Z., Chen, Y. et al. Preparation of pure gum raw materials-low brown algae application. J. Ocean. Limnol. 37, 892–897 (2019). https://doi.org/10.1007/s00343-019-8160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8160-7

Keyword

Navigation